WEBINAR INFORMATION WHILE YOU ARE WAITING

- Welcome!
- All participants will be muted
- Please check your computer audio settings before the meeting to BE SURE YOUR MICROPHONE IS MUTED to avoid background noise
- Call in number: 1 (213) 929-4212 with Access Code: 784-454-804
- Questions will be answered at the end of the presentation
- Use the question chat box or the "raise your hand" feature and we will unmute you
- If you are experiencing any difficulty during the webinar, send a message via chat
- Presentation and recording will be available on the AFPM website
- Please join Slido Live Polling on your phone or computer before we begin:

Join at slido.com #Crude

2020 AFPM SUMMIT

Excellence in Plant Performance

CRUDE FEEDSTOCK

OILFIELD PRODUCTION CHEMICALS IMPLICATIONS

ON THE REFINING PROCESSES

OCTOBER 29, 2020

WHAT IS THE AFPM WEBINAR SERIES?

- AFPM has been doing various webinars for years, primarily safety related topics
- As we continue developing The Summit, Excellence in Plant Performance, there will be more opportunity for member engagement
- Deliver educational content and knowledge sharing opportunities throughout the year
- Previous Summit Webinars are Available on the AFPM Summit Website February - Safeguarding the FCCU during Transient Operations March - Shutdown Best Practices for Reactor Systems April - Reboiler Circuits For Trayed Columns May – Learning Teams Part 1 & 2 June – Highlights of the Proposed Changes to API RP 751 Rev 5 July - Digital Transformation: Positioning for What's Next September – FCC Key Equipment Reliability

SPEAKERS

John Hazlewood

Technology Manager - Technical Services John.Hazlewood@Halliburton.com

DID YOU KNOW

YOU'RE NOT JUST RESPONSIBLE FOR WHERE YOU ARE, BUT ALSO FOR WHERE YOU'VE BEEN.

That's particularly important when you're working at heights. In addition to taking precautions while you're working, you must be mindful of how you leave the worksite.

Items blown by the wind or jarred loose can cause damage to property and people. Make sure no loose objects are left behind after you've completed your work. Check your area before you check out.

At Halliburton, Priority No. 1 is safety.

SLIDO QUESTIONS 1-2

- To access the poll, use your phone to scan the QR code or visit the link and type in the meeting code
- Live results will be displayed in the presentation
- Note: responses are anonymous

PRODUCTION METHODS

Production Methods

- Conventional
 - Offshore
 - Mars, Poseidon, Bonito Sour, Cascade
 - Enhanced Oil Recovery
 - CO₂ Flooding
 - Chemical Flooding
 - SAGD
 - Suncor OSH, Kearl Lake, Borealis Heavy, Access Western Blend
- Unconventional
 - Eagle Ford, Bakken, light tight oil (LTO)

Technical Challenges – Gulf of Mexico

- Higher Temperature and Pressures
- Speed of oil and water separations (low residence times)
- Water Quality Specifications (29 ppm O/G)
- Sub-Sea tiebacks for new production
- Shut In
- Treatment issues
 - Hydrates
 - Water Soluble Organics
 - Foam

Gulf of Mexico Issues Hydrates, Water Soluble Organics, Foaming

- Hydrates
 - \circ Hydrate remediation
 - Methanol causes WWTP issues
 - MEG causes WWTP issues
 - LDHI (Anti Agglomerates) oil soluble, surfactancy issues
- Water Soluble Organics (WSO)

WSO remediation

- Buffered acids
- Weak acids drives WSO's into oil phase, alters pH and emulsion tendencies
- Foam
 - Foam remediation
 - Silicone based defoamers widely used
 - Separation issues, catalyst fouling

Heavy Canadian Bitumen

- o Bow River
- o Fosterton
- Lloyd Blend
- Lloyd Kerrobert
- o Cold Lake
- Peace River Heavy
- Seal Heavy
- Smiley-Coleville
- Wabasca Heavy
- Western Canadian
 Select
 - o Long Lake Heavy
 - Surmont Heavy Blend
 - CNRL Light Sweet Synthetic
 - o Husky Synthetic Blend
 - Long Lake Light Synthetic
 - Premium Albian Synthetic
 - Shell Synthetic Light
- Suncor Synthetic
- Syncrude Synthetic
- Albian Heavy Synthetic

Heavy Canadian Bitumen

- Bitumen Characteristics
 - Large fraction of complex, long-chained hydrocarbons (asphaltenes, 10-20%)
 - $_{\odot}$ Heavy metals, corrosive salts, and sulfur
 - $_{\odot}$ BS&W up to 2% (not pipeline spec)
 - $_{\odot}$ Upgraded (40%) or diluted (60%) to meet pipeline spec
- Technical Challenges
 - $_{\odot}$ High demand for separations chemicals
 - Emulsion Breakers 200 to 500 ppm
 - Reverse Breakers 50 to 200 ppm
 - $_{\odot}$ Blending with lighter crudes at refineries
 - Asphaltene precipitation
- Impact to downstream operations
 - $_{\odot}$ Entrained chemicals from upstream treatment
 - $_{\odot}$ Blended crudes hide difficult species that affect downstream operations

Unconventional Light Tight Oil, Eagle Ford, Bakken

Sources

- \circ Oil Sands mining
- \odot Light Tight Oil Fracturing
- \circ Oil Shale fracturing
- Crude Characteristics
 - Light / Sweet API (35 +) / Iow sulfur
 - \circ Paraffinic / Waxy
 - \circ Low Metals
 - \circ Solids
- Technical challenges
 - $_{\odot}$ Tank Farm wax precipitation
 - Compatibility changing compatibility
 - Solids stabilized emulsions

UPSTREAM CHEMICALS

Upstream Chemical Applications

- Asphaltenes Hydrates Paraffin
 - Scale

ASSET

 Corrosion Microbiology Gas Conditioning

STIMULATION

- Water Treating
- Reservoir Souring
- H₂S and Iron Sulfide in Frac Pits
- Low Initial Production

Flow Assurance Chemicals

Scale Inhibitors

 \circ Phosphonates, polyacrylates

Paraffin Control

 $_{\odot}$ Amine oxides, polyacrylates, sulfonates

Asphaltene Control

 Alkyl phenol resins, sulfonates, quaternary amine salts

Hydrate Inhibitors

 Ethylene glycol, methanol, quaternary amine salts, LDHI-AA

Asset Integrity Chemicals

- Corrosion Inhibitors
 - Fatty amines
 Amides
 Phosphate ester
 - \circ Quaternary amine salts

Biocides

o Glutaraldehyde

- o THPS
- Quaternary amine salts

Photo Credit: Champion Technologies 2010

Phase Separation Chemicals

- Emulsion Breakers
 - \circ Sulfonates
 - \circ Surfactants
 - $_{\odot}$ Alkyl phenol resins

Defoamers

- Polydimethylsiloxane (PDMS)
- \circ Polyether alcohols
- Fluorosilicones

Photo Credit: Champion Technologies 2010

Phase separation / Scavengers

- Water Clarifiers
 - Metal salts
 - Polymers
 - Polyacrylates
- H₂S Scavengers
 - MEA/MA triazines
 - Aldehydes
 - Glyoxal

Photo Credit: Champion Technologies 2010

Stimulation Chemicals

- Friction Reducers
 - Polyacrylamides
 - Guar
- Surfactants
 - Sulfonates
 - Ethoxylated alcohols
- Clay Stabilizers
 - Quaternary amine salts

THANK YOU

SPEAKERS

Harold Eggert Chief Global Technical Advisor Harold.Eggert@Halliburton.com

DOWNSTREAM IMPACTS

SLIDO QUESTION 3

- To access the poll, use your phone to scan the QR code or visit the link and type in the meeting code
- Live results will be displayed in the presentation
- Note: responses are anonymous

Production Chemical Breakdown

Absence of chemicals can also be a problem.

"The Usual Suspects"

Functional Chemistry	Potential Impact	Water/Oil
Organic Chlorides (Carbon Tet)	Banned in 1994 Boil	Oil
Quaternary amine salts	Corrosion and Fouling	Water
Mineral Acids	Corrosion in Crude Unit	Water
Triazines	Crude Tower Fouling/Corrosion Waste Water	Both
Carboxylic Acid	Crude Unit Corrosion	Water
Calcium Stearate	Crude Unit Fouling	Both
Alkyl Phenol resins	Desalter Emulsion Stability	Oil
Fatty amines/amides	Desalter Emulsion Stability	Oil
Polymers	Desalter Emulsion Stability	Both
Sulfonates	Desalter Emulsion Stability	Both
Surfactants	Desalter Emulsion Stability	Both
Metal Salts	Desalter Emulsion Stability / Downstream Poison	Water
Polyacrylates	Fouling and Emulsion Stability	Water
Phosphate Esters	Fouling In Crude Tower	Oil
Phosphonates	Fouling In Crude Tower	Water
Vinyl acetate copolymers	Fouling Potential	Oil
Solvents	Phase Separation Potential Fouling	Both
Fluorosilicones	Silicone Poisoning of Catalyst	Oil
Polydimethylsiloxane	Silicone Poisoning of Catalyst	Oil
Ethylene Glycol	Waste Water Plant	Water
Gluteraldehyde	Waste Water Plant	Water
Methanol	Waste Water Plant	Water
Polyether alcohols	Waste Water Plant	Water
THPS	Waste Water Plant	Water

Crude Unit – Solvent Package Alone

Desalter & Emulsion Stability

Chemistries	Oil/Water	Potential Impact
Alkyl Phenol Resins	Oil	Desalter Emulsion Stability
Fatty Amines/Amides	Oil	Desalter Emulsion Stability
Polymers	Both	Desalter Emulsion Stability
Sulfonates	Both	Desalter Emulsion Stability
Surfactants	Both	Desalter Emulsion Stability
Metal Salts	Water	Desalter Emulsion Stability
Polyacrylates	Water	Desalter Emulsion Stability
Solvents	Both	Phase Separation

- Increased O&G in desalter brine
 - $\circ\,$ Increased organic loading to WWTP
 - o Chemical spend
 - Recovered oil reprocessing cost
- Growing and stabilized emulsion
 - Erratic amps and volts
 - $\circ\,$ Increased caustic demand to desalted crude
 - Water Carryover
 - High OH Chlorides

Complex Emulsions from Surfactants

Water Continuous Emulsion

Brine Quality - Polyacrylates

Heptane remains clear and oil free

Small amount of oil extracted from brine into Toluene

Water is Mostly Oil Free

Some "Polymer" and oil flocked at interface

Brine Quality - Polyacrylates

Insoluble in crude and water

- Highly polar
- Insoluble in Heptane and Toluene
- Soluble in polar solvents
 - \circ Acetone
 - \circ IPA

Microscope picture of polymer

Potential Source

- 1. Drag Reducer
- 2. Water Clarifier

Analysis indicates polyacrylamide

Corrosion and Fouling

Chemistries	Oil/Water	Potential Impact
Organic Chlorides (Carbon Tet)	Oil	Banned in 1994 - Don't hydrolyze
Quaternary Amine Salts	Water	Corrosion and Fouling - High OH Cl-
Mineral Acids	Water	Corrosion
Triazines	Both	Corrosion and Fouling
Carboxylic Acid	Water	Corrosion
Calcium Stearate	Both	Fouling
Phosphate Esters	Water	Fouling
Phosphonates	Both	Fouling
Vinyl Acetate Copolymers	Oil	Fouling

Tray 12 Deposit

- Phosphorus fouling
 - Hydrolyzes to form phosphoric acid
 - Fouling typical in 400 475 degF
- MEA hydrochloride salts
 - o Liquid salts
 - $_{\odot}$ Significant impact on iDP corrosion

Downstream Catalyst & WWTP

Chemistries	Oil/Water	Potential Impact
Fluorosilicones	Water	Catalyst poisoning
Polydimethylsiloxane	Oil	Catalyst poisoning
Ethylene Glycol	Water	WWTP
Glutaraldehyde	Water	WWTP
Methanol	Water	WWTP
Polyether Alcohols	Water	WWTP
THPS	Water	WWTP

- Increased organic load to WWTP

 Increased food = increased bacteria production
 - Increased food = Settling issues
 - \circ Increased food = Increased O₂ demand
- Solvent Packages
 - Glycols
 - \circ Alcohols
- Biocides
 - \circ Bug Kill

H₂S Scavengers

- Fines and Citations
- Poor dehydration • Oil in Effluent Poor Salt Removal High Chemical Cost **Desalters WWTP**
- Off Spec Propane Fouling Lost Production Sat Gas Plant • Crude/Vac **Tower Fouling Tower Corrosion FCCU** Unplanned Shut Down Low Production Rates Low Operating Temperature Unfavorable Operating Economics Catastrophic Failure (Explosions) Exposure of hot oil to atmosphere **Environmental Exposure** Safety Exposure **Purchased** Exposure to community Feed Mechanical Integrity
 - Fouling from Corrosion Byproducts
 - Fouling From NH₃ Salts
 - Corrosion from NH₃ Salts

- Lost Production
- Corrosion from NH3 Salts
- Basic Nitrogen Poisoning **Higher Gas Make Higher Coke Make** Lower Conversion **Compressor Limited Blower Limited**

Triazines

Reaction Steps - MEA Triazine

Low Dosage Hydrate Inhibitors

- 10% will partition to water in dealter
- >500 ppm can be toxic at WWTP
- LDHI is expected to decompose in crude distillation unit
- Decomposition products have boiling point at jet fuel and diesel (375 600 °F)
- Analysis can be confused with corrosion inhibitors (filmers)
- Commodity hydrate inhibitors are glycols and alcohols

"Tailgate Testing"

Quick Tests for Potential Issues

Water retention of crude oil

- $\,\circ\,$ Mix 10 mls water with 90 mls raw crude
- o Shake well
- $\circ\,$ Let settle to determine water retention
- Asphaltene stabilized emulsion
 - Take two 100 ml samples of desalter brine or emulsion
 - Add 20 mls heptane to one and 20 mls toluene to other
 - Compare oil content in hydrocarbon phase of two samples
 - If toluene is darker than heptane, potential asphaltenes
- Is TOC in brine from methanol or glycol
 - $\circ\,$ Measure TOC of water
 - Extract water with activated charcoal
 - Difference in value is from glycols

- High scavenger or acid content in crude
 - Monitor pH in:
 - Desalter wash water
 - Desalter Brine Water
 - $\circ\,$ Observe Delta of two values
- Micro-Emulsion in Crude Oil < 10-micron droplet size
 - $\,\circ\,$ Run one sample with knock out drops
 - Run 2nd sample without knock out drops
 - Delta in water value from microemulsion

THANK YOU

UPCOMING WEBINARS – SEE <u>AFPM EVENTS</u> PAGE FOR MORE DETAILS AND 2021 DATES

"Mobile Worker OpCo Panel Discussion"

November 18, 2020 2:00 PM Eastern

Register Here

Description

Sponsored by the AFPM Maintenance Committee, this moderated panel will focus on the justification, infrastructure and use cases for mobile worker technology at facilities.

Participants

- Hardy Kemp, FlintHills Resources
- Jim Irwin, CHS
- Jimmy Jernigan, LyondellBasell
- Paul Simmons, Phillips 66
- Bruce Taylor, Sinclair Oil

"Getting the Most From Your Hydrogen Plant in Challenging Times"

December 3, 2020 2:00 PM Eastern

Register Here

Description

Sponsored by AFPM's Hydroprocessing Group, this webinar will focus on getting the most from your hydrogen plant in challenging times. Operational advice, industry advancement and guidance for hydrogen plant operations will be discussed.

Participants

- Thor Gallardo, Haldor Topsoe
- Ken Chlapik, Johnson Matthey
- Marco Márquez, Matheson Gas

"Walk the Line and Energy Isolation"

December 8, 2020 2:00 PM Eastern

Register Here

Description

This webinar will review newly published practice sharing documents. A company case study will be presented, focusing on engaging Maintenance in WTL.

Intended Audience

Maintenance, Operations, Safety

Participants

- Amir Anderson, AmSty
- Tjokro Hermanto, AmSty
- Wesley Farrell, Lyondell Basell
- Michael Vopatek, LyondellBasell

REQUEST FOR FEEDBACK

Join at slido.com #Crude

THANK YOU FOR YOUR PARTICIPATION